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Summary—The square of the complex transverse propagation
constant in a 10SSY,magnetized ferrite is found to be described ap-
proximately by a circle in the complex plane when the magnetic
field is varied. A graphical method for obtaining approximate values

for the transverse propagation constant when the wave number in
the direction of the applied field is given and real is derived here.

This method k used to find the power absorbed from an incident

plane wave by a semi-infinite ferrite as a function of the magnetizing
field amplitude.

1. INTRODtTCTION

T

HE PROBLEM of electromagnetic wave propaga-

tion in a magnetized lossy ferrite has been treated

by Tannenwald and Seavey [1] for propagation

along and normal to the direction of applied magnetic

field with the assumption of a complex scalar permeabil-

ity, The general case of plane waves propagating at an

angle with respect to the magnetic field through a lossy

anisotropic ferrite is treated here.

The propagation constant or wave number which

describes plane wave propagation in a magnetized

ferrite is a function of direction and is complex when

the medium is 10SSY. The effect of loss is considered by

including a damping term in the equation of motion of

the microwave magnetization vector whose solution

leads to an anisotropic permeability tensor with conl-

plex elements. * A digital computer is usually employed

if numerical values of the propagation constant are

sought because of the number of basic variables and the

complex expression involved.

In the investigation of Cerenkov radiation in ferrites

[2] such a computation was carried out. It is noted that

a circle results when the square of the transverse

propagation constant is plotted in the complex plane as

a function of applied magnetic field for a given value of

the loss parameter. When the magnetic field is fixed and

the loss parameter is varied, the square of the trans-

verse propagation constant again describes a circle

which is orthogonal to the family of constant loss

parameter circles. The two families of circles (constant

magetic field, constant loss) form a pattern similar to

that of a Smith Chart [3].

The approach taken to find analytic expressions for

the circles observed numerically (for example see Fig.

13) is to seek a bilinear forlm for the complex variable

equation relating the transverse propagation constant

to the magnetizing field and the ferrite loss. It is shown
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that the resulting equation is not bilinear but becomes

bilinear for certain approximations. Lines in tlhe field-

10SS plane are transformed under these approximations

into circles in the complex plane definecl b:y the real and

imaginary parts of the square of the transverse propaga-

tion constant. Although this result is only approximately

correct, the approximation is good over a wide range of

the ferrite parameters. Expressions for the centers of

these circles and their radii are derived. This technique

is used to find the power absorbed from a plane wave

normally incident on a semi-infinite ferrite for the

special case of transverse propagation.

The method described here may be used whenever the

longitudinal wave number is given, for e<ample in the

case of Cerenkov radiation from an electron beam in a

magnetized ferrite since the beam velocity determines

the longitudinal wave number.

II. NOTATION

For a ferrite magnetized in the z direction the tensor

permeability is [4]

where

and

I-c –j. o-

jK p O

Lo o 1.
(1)

(2)

(3)

a= frequency of interest

W(J= tiH +jWE

an= ~Hi = precession frequency

Ul!r = ‘y(47rllf3)

UR=CiUZl,/T

v = gyromagnetic ratio (2.8X 10I6 cps/oe)

Hi= internal dc magnetic field

4mi11, = saturation magnetization of ferrite

T = macroscopic relaxation time which in-

cludes spin-spin and spin-lattice damping

PO= permeability of free space.

As a result of the anistropy two characteristic plane

waves exist in the ferrite for every direction of propaga-

tion. They are usually denoted as ordinary and extraor-

dinary modes. These are described by two transverse

propagation constants (PI, pz) which appear in the argu-

ments of the functions which determine the radial be-

havior of fields in the ferrite.
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III. MATHEMATICAL STATEMENT OF PROBLEM

The propagation of a plane wave in a lossy anisotropic

ferrite may be described by a propagation vector &

i=p+~ (4)

where ~ is the component along the direction of mag-

netization and p is the component normal to this direc-

tion, as shown in Fig. 1 for a cylindrical coordinate sys-

tem. The problem of finding k for the principal direc-

tions in a Iossy plasma has been treated graphically by

Weeks and Deschamps [5]. The problem of finding ~

as a function of direction in a Iossless plasma is also

described there. Here we are concerned with finding F

and k if ~ is known and real.

The equation which p and ~ satisfy may be derived

from a knowledge of the microwave magnetic fields in

the ferritez and can be shown to be biquadratic in p,

i.e.,

where

PO? = ~o~ _ f2

i.e., that value of P which makes k = k. for a given ~.

Eq. (6) relates the complex variable tic= co,l~+j~~ to

the complex variable pz. The substitution X=p2 —poz,

corresponding to a translation in the p2 plane may now

be made, giving

X2 [W2 + u~fuc – N] + X[mlrtic(pot – 2k02) – ml,,’ko’]

+ U,,’kotr’ = o. (7)

Since the observed circles all pass through the point

p2 =po2, a transformation taking lines of constant @H and

constant ~R into circles in the p~ plane must be obtained.

Such a transformation is the inversion X=1/Y. In-

verting (7) and solving for Y gives

(8)

!.@’– [(P2– K’+ M)ko2 – (1+ ,L4)~’]p2

+ [ti – 2-4~o’~2 + ~o’(M’ – K’)] = O (5)

where

k?= (u/c) ‘q

~j = ferrite relative dielectric constant

C= speed of light in vacuum.

Eq. (5) may be expanded in terms of the ferrite

parameters using (2) and (3) and grouped by descend-

ing powers of Uc with the result

There will be two curves in the p2 plane, correspond-

ing to the choice of sign in (8), which represent the

transformations of the ordinary and extraordinary

modes. If these curves are to be circles, then the equa-

tion must represent a bilinear transformation of lines in

the COcplane. If ~ is not a function of wc and f#O, (8)

will be bilinear only if p02= O, (~2= koz). It will be ap-

proximately bilinear if either term under the radical can

be neglected.

Eq. (8) may be rewritten as

@c2(P2 — P02) + @M@C(P2 – P02) (P2 – 2k02) 2[’

—
WP2 — po~)~ + ti.#koz(k02 – –-=1’ [1+(21:P2) = O (6) P2 – Poz

r

k2=p2+;2~

which reduces to the following in the limits of small and

large cOc/~.tf

I_______

E-i w’

F —-=0
@l}I

8 z

z
‘q-2

P2 = ~02 +

-F 1+ $/1+[2 + ;]2 “oa)

Fig. l—Longitudinal and normal components of wave vector.

and
2 Eq. (5), usually written in terms of the propagation number k,

may be obtained by replacing — rz by p~+~~ in Eq (7-6)? p. 298 of Lax
and Button [8]. It should also be pointed out that (5) is Identical with
the expression derived by Kales [9] for the transverse propagation
constants if his # is replaced by —~z. (lOb)
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The curves of (8) go through the point pz=pOz for in-

finite applied field.

Toneglect either term under thera,dicalof (9) one of

the following conditions must hold:

Wlv Cos 00
a) coc+— >>2. ~—

sinz 00 slnz 00

~M Cos 00
b) tic+— << 20J –— .

sinz 110 sinz 190

The trigonometric identities are defined from Fig. 2.

Fig. 3 shows the regions in the w plane where a) and b)

are satisfied, assuming that poz is real. The entire right

half plane can satisfy condition a) if u~ is sufficiently

large. In most cases condition b) is of no interest since

the precession frequency u~l is assumed positive. If

hcos00/sin200 is sufficiently large, condition b) could be

satisfied with some positive values of @H.

the region of convergence.

LL “L. L”LLLL.LcILLA~cL. LDL”L. L“,
used provided UC is chosen in

To a first approximation

%“(P02~C + ko’ti,w)’ + 4ti2k0212

It is important to note that for many values of @H (11) is

a poor approximation. It improves, however, as Iuc I in-

creases.

Ak.

P“
80

{
Fig. 2—Isotropic propagation constants.

Fig. 3—Regions of the w plane where approximately bilinear
form is obtained.

Over the range of parameters where (11) is valid, the

transformation 1’ now becomes

{

@C(2k02 — p02) + ~~koz ~ (P020JC+ ~02@M)
Y=

2uMk02[2

C!J’
* ———

}(/Jo’@c + ko2cJM) “
(12)

IV. Tm INVERSE TRANSFORMATION–-M INUS ROOT

The choice of the negative sign in (12) yields

w’
Y-= ~-– —.—

w,wko’ UM(P02WC+ ko%nl)

with real and imaginary parts

1

[

mz(pozw~ + kozco~)~=_ ?—
m,w ko’ (PO%H + ko’cOM)’ + (OJRPO’)2 1

[

(.Wpo)’
~—Q

J+
IWM ko’ (P02UH + ~02WM)2 + (@Rp02)2

Points in the wc = tiH +jUR plane which are

(13)

(14a)

(14b)

easily

mapped into the L plane are shown in Table I. The

transformation Y_ is the form (az+b) + (1/cz+d) and is

conformal. Lines of constant co~ and constant @R in the

coc plane are distorted in the Y_ plane as shown in Figs.

4(a) and 4(b). For practical ferrites at, microwave fre-

quencies, 0< (tiR/fJ) <0.1, [6] and the region of interest

in the tic plane is a narrow strip in the upper half of the

right half plane.

With the assumption of reasonably 10TW loss ferrites

(cdR/w)’ = 0,3 the line @H= constant may be approxi-

mated in the Y– plane by the line

1

[

w’ -~=_z—
O)M ko” (P02COH + ko’co~j. 1

(15a)

while the iine tin= constant is represented by

‘=3$+ (5)’1

(15b)

for aM/W small as seen in Figs. 4(a) and 4(b). Thus the

curves of these two figures have been approximated by

the two straight lines of (15a) and (15 b).

The inversion

x.+

1
~+j~=—

U’+’jv

3 See Appendix.
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~H

o

Const.

————

Const.

———.

o

————

+*CC

0

0

+~m

-———

Const.

Const.

TABLE I

POINTS IN THE Y-PLANE

u

(–)(.J2
—

f&fhII

a2k02
_ ——— ——— —__

(wko’)’ + (P02Q.)2

v

o

0

ax

- [--

1

ti’lr k,’

+ –––Q2~—–
(CWko’)’+ (Pa’%?)’1

carries these lines into circles in the X plane such that Numerical evaluation of (17a) and (17b) vield a

the line u = constant becomes the circle

()

~–;2+a2=L2
2U

(16a)

which is tangent to the imaginary axis, centered at

(1/2u, O) and has radius I l/22~ I [7]. The line of con-

stant v transforms into the circle

(16b)

which is tangent to the real axis with center [0,

– (1/2v) ] and has radius I l/2zJ \ . These are shown in

Fig. 5 (page 522). Using (15a) and (15b) one obtains

1 wMk02

[

(Po’wH + ko2w,w)

G= 2 1
(17a)

@H(@HP02 + kozu~) — c#ko2

1 Wlfkoz

[

(wl,ko)’
—._
2V 12WR (co.wko)2+ (Poti)’ “

(17b)

For a specific ferrite the value of the loss parameter

u,R/u, tabulated in [6], determines l/2zI independent of

the applied magnetic field. A “constant loss” circle may

now be drawn, For each value of @H/ti a ‘(constant field 7’

circle is generated. As WH/(,4) increases, the centers move

along the negative real line toward negative infinity

while the radii increase. As seen from (17a) when

@H(~02@~ + k02@~) = wzkoz the circle is centered at

infinity and has infinite radius. For largerWH/W the
centers return along the positive real line while the

radii decrease. The intersections of these circles with the

“constant IOSS” circle generate the circular locus in the

X plane.

., .,.
circular locus about 30 per cent smaller than that com-

puted exactly (shown in the Appendix). Better results

are obtained by including another term in the bi-

nominal expansion and by improving the approximation

for the constant v line.

An average value for v may be defined as

VI + V2
g=

2

where VI and V2 are computed for two values of WH/~.

These values are chosen such that most of the circle has

been traversed between them. For example, in the

curves of the Appendix the points wH1/w = 0.1 and

co~,/co = 1.0 yield a good approximation. Eqs. (1 7a) and

(17b) could also have been used to establish these

values.

Using the first three terms in the binomial expansion,

an average v and the approximation (WR/ti) 2 = O one

obtains

1

[

m’ (a’kO~)’~=— =_ +
1WM koz (PO’@H + kozu~) (p020J~+ koawM)s ‘18a)

wR

{(

wpoko

)

2
g= — 2+

2alIko2 P02WH1 + ko2tiM

[(

wkof 2
.1–3

P02WH1 + ko2w.v)1

(

woko
+

P02WH1 + ko2co,v )2

[(

wko~ 2
.1–3

POzwHj + ko2w}~ )1}
(18b)
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v

1

I (0,0)
I u

I

I Y

I
II

(b)

Fig. 4—(a) Mapping of QIR= constant in the Y_ plane. (b) il’fapping of a~ = constant in the I’_ plane.

No average is necessary for u since in practical ferrites To compare the accuracy of this approximate method

@I?/@ is small so only values near ~ = O are important.4 with the exact computer results (shown in the Appendix)

The circles defined by (18a) and (18b) are in the the following parameters were chosen.

X =p2 –p~’ plane. To enter the pz plane a translation by

poz is required. Representative circles in the pz plane, as- @H1 ~M

suming poz real, are shown in Fig. 6. The intersection of
—= 0.1 —= 1.0 ~f = ~13

u
a constant @H/@ circle with the constant ~E/@ circle is

u

the point p’(~H/ti, tiR/@) . ~EIg

Notice that the variables COHand @Rand the constant –1.0 S= 0.01923
)

{2 = (’:5 2 (1.07)’

O,U can be normalized by u to provide dimensionless
w a \G

quantities useful for computational purposes and which
The comparison is shown in Table 11.

yield universal results.

4 SeeFig. 4(a). 5 Value for Ferramic RI as determined by Sensiper [6].
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= CONSTANT

Y

\

\

9
‘<$, v = cONSTANT

Fig. 5—Lines of constant u and v in the X+ plane.

Re pz

%= CONSTANT
a

\

G“ ‘=C”NSTANT
Im p’

Fig. 6—Lines of constant uFI/ti and OJR/@in the P2 plane.

TABLE II

COMPARISON BETWEEN APPROXIMATE AND EXACT RESULTS

Approximate Exact
Center Center

—.

UH/W = 0.59 –6534+j0 –6200+j0

@R/@ =0 .0192 468 –j9470 468 –jIO’

j=(px)’ – 8600 –j6700 –8825–j6438

=10,880/217.9° =10,900/216.1°
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-1(0,0)

‘M{2

(a)

‘R— — —— —— —— —— —

“’M12

\
1

I
---”r

6JR 1 6J2(302
—— .
‘M (2 (k:~M)2+(uRp:)2 I

(b)

Fig. 7—[a) hIapping of O,Y= constant in the Y+ plane. (b) Mapping of @i?= constant in the Y+ plane

To use the inverse transformation one must:

1) Determine the behavior of constant uw and @R

lines in the 1’ plane [Figs. 4(a) and 4(b)],

2) Approximate these curves by appropriate straight

lines [Eqs. (18a) and (18b) 1,

3) Invert these approximate lines to obtain the cir-

cles in the X plane [Eqs. (16a) and (16b) ],

4) Translate by po~ to enter the pz plane.

THE INVERSE TR~NS~ORMATIO~-PLUS ROOT

The choice of the positive sign in (12) produces

with real and imaginary parts

~R

[

1 (w/Jo)’
~=__ ——__—— ————

1

_——... . (20b)

@,ll i-’ (P02~,r + ko’mu) ‘ + (@RPo’)’

A line of constant WI transforms intc} the curve of

Fig. 7(a) while a constant tiR line is shown in Fig. 7(b).

The origin (UM, @R= 0) is translated’0

I@’()~=——
ko’ ~ M

~) = o.

Notice that for Y+ the origin is located at u >0 while for

Y_ it is at 16<0.
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As before, linear approximations for the curves of

Figs. 7(a) and 7(b) may be made, and circles gen-

erated which are defined by

1 U,vr i-’(po’cw + ko’ul!?)—

2U+ –
(21a)

2 @H(po’@H + k.o%ilr) + (al-) ‘

1 @’M .rZ(po%m + ko%,u) ‘—
2V+ –

— (21b)
2@R (P02~H + kO’@M) 2 – (@PO~) 2

with the assumption (ti~/u)2 = O.

The circles of constant u~ will always be centered

on the positive real axis. Their maximum radius is

(ko2/2) (U~/W)2 and their minimum radius is zero. This

restricted range results in a nearly constant value of pz

with a very small imaginary part since the constant @R

circle has a very large radius. This corresponds to the

ordinary mode behavior.

V. THE POINTS OF MAXIMUM Loss AND

MAXIMUM PHASE SHIFT

From p’, the transverse propagation constant (p) is

found by taking the negative square root. This choice of

sign insures attenuation with increasing transverse co-

ordinate. For example, for a plane electric field

-—
E = E. exp [–j(k. R)]

= E. exp [–j(pr sin o + ~z cos o)]

and with p =P’ –j] p“ I

E= E. exp [– I p“ I r sin O] exp [–j(p’r sin tl+~z cos o)]. (22)

The maximum value of I p“ I as a function of applied

magnetic field may be found from the construction of

Fig. 8(a). Maximum loss occurs at the maximum Ip“ 1.

Since p = <i e–j@/JJand p“ = –j~~ sin 6/2 for maximum

P“*

d( - 6\

or

Using the law of

Notice that

() 6 dc
tan~ ~+c=O.

cosines one obtains

dc — ac sin 4

z= c—acosd

6=++/3

(23a)

(23b)

(0,0)

(
Imp’

(a)

(0,0) —--+=--l
Re pz

a a=m7_7%r

b . I*I

c= pz

Im p’

(b)

Fig. 8—(a) Construction for maximum loss point. (b) Construction
for maximum phase shift point.

and

dti = d+,

since ~ is a constant fixed by the value of po2 and the

location of the center of the circle. Combining (23a) and

(23b) yields the following transcendental equation for

the maximum loss point:

:=sin~(l:::sa)+ cos~ ‘24’)

The maximum phase shift point is found from the

construction of Fig. 8(b) with the result

:=sin(nnn-cos’(24b)

These transcendental equations may be readily solved

by applying the constructions of Figs. 8(a) and 8(b),
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Fig. 9—Real and imaginary parts of normalized transverse propagation constant and wave vector angle as

functions of applied magnetic field.

respectively, to the circular locus derived in Section IV.

The maximum attenuation occurs at an applied field for

which tiH(p02uH + ko2U~1) < (do) 2, while the maximum

phase shift occurs for tiH(po2uH+ kO’koM) > (oJkO) 2. For

COH> u, the magnetic losses are essentially zero. The

complex propagation constant p = p’ —j I p“ I is plotted

in Fig. 9 for values of p2 taken from Fig. 13. The nor-

malization p = (pA) has been made.

VI. ANGLES OF WAVE VECTOR WITH MAGNETIC FIELD

The two p components of the plane wave will propa-

gate through the ferrite at angles dependent upon the

applied field, the ferrite parameters and the longitudinal

propagation constant. These angles may be computed

from Fig. 1,

(25)

The behavior of (3I is shown in Fig. 9. The angle 13zis

essentially constant since (p2’) z varies slowly with

tiE/cJ. The angle of propagation is a function of the loss

parameter WE since p’ depends on it.

VII. APPLICATION OF METHOD

Tannenwald and Seavey [1] examine the case of a

plane wave normally incident on a semi-infinite ferrite

and compute the power absorbed by the ferrite when the

applied magnetic field is parallel to the air-ferrite inter-

face. The ratio of the power absorbed to the incident

power is shown to be

P 4(30E.J—
(Pocf)’ + \ P 1’+ U?oz; ‘

(26a)
Po –

where & =w/C.

When the transverse propagation constant is nornlal-

ized by the wavelength (p= pA), (26a) becomes

P 8mf~
.

(2n’Ef)’ + I p 12 + 47K7 “
(26b)

Po –

This expression is easily evaluated as a function of

applied field for a specific ferrite by the method de-

scribed herein.

For the case of transverse propagation

~=()

k=p

ki)z = f102,

and (7) becomes

X’[LW(CW+ coj,) – u’] – ko2X[uM(wc + CW)] = O

with solutions

X=(pz–poz)=o ordinary mode

ko2tiM(wc + LO,lf)
x = extra-ordinary mode.

Wc(wc + UM) — W2

The transformation Y’ now becomes
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Fig. 10—Circular locus of square of normalized transverse propagation constant as a function of applied magnetic
field for case of transverse propagation.

which, assuming that (CJR/CO)~ = O, has real and imaginary

parts

An average value for the v coordinate maybe again de-

fined as

UE

{[

1 1
7i=— 2+CJ +

2kJti.~1 (@Hl + @M) 2 1)(@H2 + @.,,)’ “

The centers of the constant applied field circles are then

given by [p02 + (1 /2zL), O] and the center of the constant

loss circle is [PO’, – (1/27)]. The locus of Fig. 10 is

obtained for the following parameters

()
2

13 ~
c

The magnitude \ p 12 is measured from the origin. The

real part of the propagation constant is ~ = ~ I D 12 cos

+/2 where JI is the angle between the positive real axis

and the line from the origin to the value of I p [ 2 in ques-

tion. The real and imaginary parts of p are shown in

Fig. 11, while the absorbed power is shown in Fig. 12 as

a function of the applied magnetic field.

When the applied magnetic field is zero, p’ =POZ

(P’ =PO) and (~6b) reduce to
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Fig. 1 l—Real and imaginary parts of normalized transverse propa-
gation constant as a function of applied magnetic field.

VIII. CONCLUSIONS

The square of the transverse propagation constant

has an approximately circular locus when plotted in the

complex plane as a function of applied magnetic field.

The radius of this circle is directly proportional to the

ferrite saturation magnetization (co,~f), the ferrite di-

electric constant (ko) and is inversely proportional to

the longitudinal propagation constant (~) and the 10SS

parameter (OJR). The constant loss circle and the value

of the square of the transverse propagation constant for

a particular value of applied field are obtained by a

graphical technique obviating the need for a digital com-

puter unless extreme accuracy is required.

If no loss is present the ferrite is cut off until

@H(~02@H + ki)%,lf) = kobz since for values of @H less

than this value Pz is real and negative. In a 10SSY ferrite,

propagation is possible for any value of applied field. The

angle between the wave vector and the applied mag-

netic field depends on the loss properties of the ferrite

since this determines p’.

APPENDIX

The equation of motion of the ferrite magnetization

vector including the Landau-Lifshitz damping term is

where

~ = the total magnetic field vector in-

ducting dc and time varying terms

y = gyromagnetic ratio
~ =@ R/@ = 1 /tiT= 10SS parameter.

By suitable manipulations, expressions for the time

varying magnetization components are obtained from
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Fig. 12:Ratio of power absorbed to power incident, as a function of

app!l:d m.agneti: field,, of a plane wave normally incident on a
semi-infinite ferrite which 1s magnetized parallel to the air-ferrite
interface.

which are found the elements of the permeability

tensorfi

@M(l + CP) [LW(l + C@ + jrlm]
~=1+——

[@H(l + a’) +jm!]’ --(& -

(28)

If the losses are small a2 = (@R/@)’ may be neglected.

Eqs. (28) reduce to

@.11[Cwf+ jua]
/4=1+

[OH + jwa]’ – co’

(29)

With the definition wc = UH +ju~, these reduce to the

form of (2) and (3).

To obtain an exact solution for the sauare of the

transverse propagation constant

rectly. When expanded in terms

ters (30) results:

GSee Lax and Button [8], p. 152.

(5) may tie solved di-

of the ferrite parame-

-.



IEEE TRANSACTIONS ON MICRO WAVE THEORY AND TECHNIQUES

(~)’ X10-3 RADIANS

~
-12 -11 -10 –9 –8 –7 –6 –5 –4 –3 –2 -1

/ /%’w -’t

\/
-15

t

12345678 9 10 11 12 13

\

2 )
,64

—P2 ❑ P02

/

/

.63

6)M
— ❑1.0cd

&f ❑r3

~’= (#0.156)

L’ ‘1
-16

_,7
(~)’x 10-3 RADIANS

.61

-18

- 19– –

-20

Fig. 13—Computed circular locus of square of normalized transverse propagation constant as function of applied magnetic field
for several values of the loss parameter showing effect of approximation (OE/O)2 = O.

~ LIJJJ<[P02(UH + @R) + P020!’6JH + k02aM(l + a’)]’ + (2LOkOf)2} .

Digital computer values for (P) 2= (PA) 2 were obtained [2] F. J. Rosenbaum and P. D. Coleman, “Cerenkov radiation in

from (30) for (rJR/ti)2 =a2#0 and for az = O. Fig. 13
ankotropic ferrites, ” IRE TRANS. ON MICROWAVE THEORY AND
TECHNIQIJES, vol. MTT-11, pp. 302–311; September, 1963.

shows the effect of the approximation for certain typical [3] P. H. Smith, ‘[Transmission-line calculator, ” Electronics, vol. 12,

ferrites.
~11PP. 21-31; January, 1939.
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