Electromagnetic Wave Propagation in Lossy Ferrites

FRED J. ROSENBAUM

Summary—The square of the complex transverse propagation
constant in a lossy, magnetized ferrite is found to be described ap-
proximately by a circle in the complex plane when the magnetic
field is varied. A graphical method for obtaining approximate values
for the transverse propagation constant when the wave number in
the direction of the applied field is given and real is derived here.
This method is used to find the power absorbed from an incident
plane wave by a semi-infinite ferrite as a function of the magnetizing
field amplitude.

I. INTRODUCTION

HE PROBLEM of electromagnetic wave propaga-
T tion in a magnetized lossy ferrite has been treated

by Tannenwald and Seavey [1] for propagation
along and normal to the direction of applied magnetic
field with the assumption of a complex scalar permeabil-
ity. The general case of plane waves propagating at an
angle with respect to the magnetic field through a lossy
anisotropic ferrite is treated here.

The propagation constant or wave number which
describes plane wave propagation in a magnetized
ferrite is a function of direction and is complex when
the medium is lossy. The effect of loss is considered by
including a damping term in the equation of motion of
the microwave magnetization vector whose solution
leads to an anisotropic permeability tensor with com-
plex elements.? A digital computer is usually employed
if numerical values of the propagation constant are
sought because of the number of basic variables and the
complex expression involved.

In the investigation of Cerenkov radiation in ferrites
[2] such a computation was carried out. It is noted that
a circle results when the square of the transverse
propagation constant is plotted in the complex plane as
a function of applied magnetic field for a given value of
the loss parameter. When the magnetic field is fixed and
the loss parameter is varied, the square of the trans-
verse propagation constant again describes a circle
which is orthogonal to the family of constant loss
parameter circles. The two families of circles (constant
magetic field, constant loss) form a pattern similar to
that of a Smith Chart {3].

The approach taken to find analytic expressions for
the circles observed numerically (for example see Fig.
13) is to seek a bilinear form for the complex variable
equation relating the transverse propagation constant
to the magnetizing field and the ferrite loss. It is shown
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that the resulting equation is not bilinear but becomes
bilinear for certain approximations. Lines in the field-
loss plane are transformed under these approximations
into circles in the complex plane defined by the real and
imaginary parts of the square of the transverse propaga-
tion constant. Although this result is only approximately
correct, the approximation is good over a wide range of
the ferrite parameters. Expressions for the centers of
these circles and their radii are derived. This technique
is used to find the power absorbed from a plane wave
normally incident on a semi-infinite ferrite for the
special case of transverse propagation.

The method described here may be used whenever the
longitudinal wave number is given, for example in the
case of Cerenkov radiation from an electron beam in a
magnetized ferrite since the beam velocity determines
the longitudinal wave number.

II. NoraTioN

For a ferrite magnetized in the z direction the tensor
permeability is [4]

v —jk O
2% = po| jx v O
Y
.0 0o 1
where
Wewar
po= 14— )
we” — w”
ware
K= e 3)
wcz — w2
and

w=frequency of interest

We =WH +j0->R

wyg =+vyH;=precession frequency

wy ="y{dmx M)

wp=aw=1/T
v =gyromagnetic ratio (2.8 X 10¢ cps/oe)

H;=internal dc magnetic field

4w M ,=saturation magnetization of ferrite
T'=macroscopic relaxation time which in-
cludes spin-spin and spin-lattice damping

o= permeability of free space.

As a result of the anistropy two characteristic plane
waves exist in the ferrite for every direction of propaga-
tion. They are usually denoted as ordinary and extraor-
dinary modes. These are described by two transverse
propagation constants (py, p2) which appear in the argu-
ments of the functions which determine the radial be-
havior of fields in the ferrite.
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I1I. MATHEMATICAL STATEMENT OF PROBLEM

The propagation of a plane wave in a lossy anisotropic

ferrite may be described by a propagation vector k

k=p+¢ 4
where { is the component along the direction of mag-
netization and p is the component normal to this direc-
tion, as shown in Fig. 1 for a cylindrical coordinate sys-
tem. The problem of finding % for the principal direc-
tions in a lossy plasma has been treated graphically by
Weeks and Deschamps [5]. The problem of finding %
as a function of direction in a lossless plasma is also
described there. Here we are concerned with finding 5
and % if ¥ is known and real.

The equation which p and { satisfy may be derived
from a knowledge of the microwave magnetic fields in
the ferrite? and can be shown to be biquadratic in p,
i.e.,

IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES

wc(Zkoz - pog) + wuke® + \/(10020-’0 + k02wM)2 + 4w2k02§‘2
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where

po® = ko — {2

t.e., that value of p which makes k=%, for a given {.

Eq. (6) relates the complex variable wy=w;+jwr to
the complex variable p2. The substitution X =p%—py?,
corresponding to a translation in the p? plane may now
be made, giving

X?[we? + wnwe — 0] + X[wmwelpe? — 2ke?) — wirke?]

+ wﬂ12k02§"2 = 0. (7)

Since the observed circles all pass through the point
p?=po% a transformation taking lines of constant wy and
constant wg into circles in the p? plane must be obtained.
Such a transformation is the inversion X=1/Y. In-
verting (7) and solving for Y gives

Y =

(8

2warko®?

pot = [ — &+ p)ke? — (1 + w)¢*]p?
+ [¢f — 2wk’ + Rt — )] =0 (5)
where

ko= (w/C)%;
¢; = ferrite relative dielectric constant
C=speed of light in vacuum.

Eq. (5) may be expanded in terms of the ferrite
parameters using (2) and (3) and grouped by descend-
ing powers of wg with the result

wc(p? — po%) + wuwe(o? — po?) (02 — 2k?)
— w¥(p® = pe®)? + walko®(ke® — p2) = 0 (6)

k2=p2+¢?

Fig. 1—Longitudinal and normal components of wave vector.

% Eq. (5), usually written in terms of the propagation number &,
may be obtained by replacing —I"? by p2+¢%in Eq (7-6), p. 298 of Lax
and Button [8]. It should also be pointed out that (3) is identical with
the expression derived by Kales [9] for the transverse propagation
constants if his v?is replaced by —¢2.

There will be two curves in the p? plane, correspond-
ing to the choice of sign in (8), which represent the
transformations of the ordinary and extraordinary
modes. If these curves are to be circles, then the equa-
tion must represent a bilinear transformation of lines in
the we plane. If ¢ is not a function of we and {0, (8)
will be bilinear only if pe?=0, ({*=k*). It will be ap-
proximately bilinear if either term under the radical can
be neglected.

Eq. (8) may be rewritten as

282

£\ we
(]2
P2 - Po2 ko war
2 2 2
k74 R (5 Bl R EF ol I
ko/ wx ko war

which reduces to the following in the limits of small and
large we/war

22

§ o
el
kO Wy

PP =p®+ (10a)

and

W

—> ®©

(10b)
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The curves of (8) go through the point p2=py? for in-
finite applied field.

To neglect either term under the radical of (9) one of
the following conditions must hold:

cos g

a) |we + > 20 —
sin? 6y sin? 6y
cos 6

b) we + .
sin? B, sin? 6y

The trigonometric identities are defined {rom Fig. 2.
Fig. 3 shows the regions in the w¢ plane where a) and b)
are satisfied, assuming that p? is real. The entire right
half plane can satisfy condition a) if war is sufficiently
large. In most cases condition b) is of no interest since
the precession frequency wy is assumed positive. If
2w cos By/sin? b, is sufficiently large, condition b) could be
satisfied with some positive values of wg.

A binominal expansion for the radial of (8) may be
used provided wg is chosen in the region of convergence.
To a first approximation

V (po’we + kowar)? + 4e?ko?

= (pstsc + o) 4 R
polwe 0" WM 9 (po w0+ ko? wM)

- (1)

It is important to note that for many values of wgy (11) is
a poor approximation. It improves, however, as |we I in-
creases.

Fig. 2—Isotropic propagation constants.

//

Fig. 3—Regions of the wc plane where appr0x1mately bllmear
form is obtained.
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Over the range of parameters where (11) is valid, the
transformation ¥ now becomes

- {wc(2k02 — po?) + wake? + (po®we + kolwar)
szk02§‘2

P 1
(po we + ko? COM)} (12)

IV. THE INVERSE TRANSFORMATION—MINUS RooT

The choice of the negative sign in (12) yields

2

we w
V_ =~ — (13)
ka02 wM(Pozwc + ko2wM)
with real and imaginary parts
w= i.[w_H __ @eden + R'ow) } (14a)
wir Lke?  (po’wn + koPwn)? + (wrpe?)?
w 1 wpo)?
y = i[——+ (o) } (14b)
wu Lk (poPwr + ko*wm)? + (wrpo?)?
Points in the we=wg+jwr plane which are easily

mapped into the ¥_ plane are shown in Table I. The
transformation Y_is the form (az-+b)+(1/¢z+d) and is
conformal. Lines of constant wx and constant wg in the
we plane are distorted in the Y_ plane as shown in Figs.
4(a) and 4(b). For practical ferrites at microwave fre-
quencies, 0 < (wg/w) <0.1, [6] and the region of interest
in the we plane is a narrow strip in the upper half of the
right half plane.

With the assumption of reasonably low loss ferrites
(wr/w)?=~0,% the line wy=constant may be approxi-
mated in the Y_ plane by the line

1 [ wy w? i
y=—|—=—— (15a)
War koz (Po2wH ‘|‘ k02wM)-
while the line wz = constant is represented by
1 2
7,:_“’_{[_4_(“’”“)} (15b)
war L ko warko®

for wm/w small as seen in Figs. 4(a) and 4(b). Thus the
curves of these two figures have been approximated by
the two straight lines of (15a) and (15b).

The inversion

1
X -
Y

Yy +j0=

u -+ jv

3 See Appendix.
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TABLE I
PoiNTs IN THE Y-PLANE
wi WR u v
w 2
0 0 - ( ) 0
wprko
1 [wH
k 2
Const. 0 wM 0 . 0
_ __LM__]
poor + ko¥wir
Const, | —+ il —E o
warko?
wR _1_
w?ko? wyr L ko?
0 Const, | — ———————
(wsrko?)? + (piwr)? R whp?
(Ckaoz)2 + (Po2wR)2
—+ o | Const. st _9r
warko?
carries these lines into circles in the X plane such that Numerical evaluation of (17a) and (17b) yield a

circular locus about 30 per cent smaller than that com-
puted exactly (shown in the Appendix). Better results
(16a) are obtained by including another term in the bi-
nominal expansion and by improving the approximation
for the constant v line.
An average value for v may be defined as

the line = constant becomes the circle

1 2
- 62=
(7 2u> *

which is tangent to the imaginary axis, centered at
(1/2u, 0) and has radius |1/2«| [7]. The line of con-

2

2u

stant v transforms into the circle ot
1 12 v= 2
424+ )= |— (16b)
29 A

where v, and v, are computed for two values of wg/w.
These values are chosen such that most of the circle has
been traversed between them. For example, in the
curves of the Appendix the points wg,/w=0.1 and
w,/w=1.0 yield a good approximation. Egs. (17a) and
1 “’Mk°2|: (pc’wr + ko’war) J (17a) (17b) could also have been used to establish these

which is tangent to the real axis with center [0,
—(1/2v)] and has radius |1/2v]. These are shown in
Fig. 5 (page 522). Using (15a) and (15b) one obtains

5_1/; B 2 CL)H(COHPOZ —|— kosz) _ w2k02 values.
1 wirke? (wirko)? Using the first three terms in the binomial expansion,
— = [ - 0} . (17b) an average v and the approximation (wgz/w)?~0 one
2v Zor L(wako)® + (pow)® obtains
For a specific ferrite the Val}Je of the .loss parameter 1 [ wn w? (w2kof)?
wr/w, tabulated in [6], determines 1/2v independent of = ‘TM“ ‘];2‘ - (oiteon & kowny) " (puom + kosz)3:| (18a)

the applied magnetic field. A “constant loss” circle may
now be drawn. For each value of wg/w a “constant field” LI I wpoko ?
circle is generated. As wy/w increases, the centers move Dearko? polwm, + kowy

along the negative real line toward negative infinity kot .
0.
L=+ )]

while the radii increase. As seen from (17a) when
w(po’wg+k’wy) =w?k? the circle is centered at
infinity and has infinite radius. For larger wg/w the wpoko 2
* (ron )

P

P02U-’H1 + Eo2war

centers return along the positive real line while the
radii decrease. The intersections of these circles with the
“constant loss” circle generate the circular locus in the [1 _ 3< wkof >2:'} (18b)
X plane. po*om, + koPwa .

o®wr, 4+ kolwar
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Fig. 4—(a) Mapping of wr =constant in the Y_ plane. (b) Mapping of wg=constant in the 1. plane.

No average is necessary for # since in practical ferrites
wr/w is small so only values near v =0 are important.*

The circles defined by (18a) and (18b) are in the
X =p?—p? plane. To enter the p? plane a translation by
po® is required. Representative circles in the p? plane, as-
suming po? real, are shown in Fig. 6. The intersection of
a constant wy/w circle with the constant wg/w circle is
the point p*(wn/w, Wr/w).

Notice that the variables wg and wg and the constant
wyr can be normalized by w to provide dimensionless
quantities useful for computational purposes and which
yield universal results.

4 See Fig. 4(a).

To compare the accuracy of this approximate method
with the exact computer results (shown in the Appendix)
the following parameters were chosen.

o1 o0 g = 13
w w
wH, WER [ w\?
=10 — =00198 = (— (1.07)
w w \ C

The comparison is shown in Table I1.

5 Value for Ferramic R1 as determined by Sensiper [6].



522 IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES September
0
U= CONSTANT
Y
2 2
(0*-p7)
V = CONSTANT
Fig. 5—Lines of constant # and » in the X, plane.
P
A
|
AN
. (0,0) re p?
(05+55 0)
W G5
70&— CONSTANT \Q\

7 R CONSTANT
\—/ W
Im p2

Fig. 6—Lines of constant wg/w and wr/w in the p? plane.

TABLE II
COMPARISON BETWEEN APPROXIMATE AND ExacT RESULTS
Approximate Exact
Center Center
wr/w=0.59 —6534450 —6200-4-70
wr/w=0.0192 468 —79470 468 —710¢
;z=(p)\)2 —8600—76700 —8825—76438
=10,880/217.9° =10,900/216.1°
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Fig. 7—(a) Mapping of wg =constant in the Y, plane. (b) Mapping of wg=constant in the Y, plane.
To use the inverse transformation one must: Y _1_ \:_wi N “—_wﬂ(szwH + kozw;ul_)_] (202)
1) Determine the behavior of constant wy and wz wyr L ¢ (po2wr + kowa)® + (wrpo®)®
lines in the ¥ plane [Figs. 4(a) and 4(b)], R [ 1 (wpo)? :\ (20b)
A ; : : P = — | — ——_—— |
2) Approximate these curves by appropriate straight o Lt (oo & koen)® + (mpe?)?

lines [Eqs. (18a) and (18b)],
3) Invert these approximate lines to obtain the cir-
cles in the X plane [Egs. (16a) and (16b) ],
4) Translate by pg® to enter the p’ plane.
THE INVERSE TRANSFORMATION—PLUS ROOT
The choice of the positive sign in (12) produces
602

war (902600 + kOQO-’M)

with real and imaginary parts

we

—

wuf?

Y. (19)

A line of constant wg transforms into the curve of
Fig. 7(a) while a constant we line is shown in Fig. 7(b).
The origin (war, wg=0) is translated to

w )2
Wy

Notice that for ¥ the origin is located at >0 while for
Y_ it is at #<0.

1

ko®
0.

I

u

kil
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As before, linear approximations for the curves of
Figs. 7(a) and 7(b) may be made, and circles gen-
erated which are defined by

1 WM po’wn + kolwn) (21a)
T a
2ur 2 wu(plon + kows) + (wf)?

1 War F2potwr + kolwir)? (21b)

Z}I T 2wg (po?wnr + kolwir)? — (wpof)?

with the assumption (wr/w)?=0.

The circles of constant wgy will always be centered
on the positive real axis. Their maximum radius is
(ko?/2)(wu/w)? and their minimum radius is zero. This
restricted range results in a nearly constant value of p?
with a very small imaginary part since the constant wg
circle has a very large radius. This corresponds to the
ordinary mode behavior.

V. Tue PoiNTs oF MaxiMuM Loss AND
MAXIMUM PHASE SHIFT

From p?, the transverse propagation constant (p) is
found by taking the negative square root. This choice of
sign insures attenuation with increasing transverse co-
ordinate. For example, for a plane electric field

E = Eyexp [—j(k-R)]

= Egexp [—j(or sin 8 + ¢z cos 6)]
and with p=p’—j|p"|
E=FEyexp[— | p"|rsin6] exp [—7(o'r sin 0+¢z cos 8)]. (22)

The maximum value of |p”| as a function of applied
magnetic field may be found from the construction of
Fig. 8(a). Maximum loss occurs at the maximum |p”|.
Since p=+/ce% and p’ = —j+/c sin §/2 for maximum

pll
i/ _ s
% —jVe Sln—2—> =0,

or

(t i ) a -+ 0 (23a)
an )% c = a
Using the law of cosines one obtains
dec —ac sin ¢
= (23Db)

ZJ—;& ¢ — acos¢ .
Notice that

d=¢+8
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(0.0)

Re p?

a= /lp}l“‘%\?lz
i
b=loyl

c=p’

Im p?

®

Fig. 8—(a) Construction for maximum loss point. (b) Construction
for maximum phase shift point.

and

ds = do,
since 8 is a constant fixed by the value of p? and the
location of the center of the circle. Combining (23a) and

(23b) yields the following transcendental equation for
the maximum loss point:

sin §

c .
";‘ = Slnﬂ(m> -+ COS,G.

The maximum phase shift point is found from the
construction of Fig. 8(b) with the result

c . 14 cosd
— = smﬁ(——) — cos f3.
a

sin §

(24a)

(24b)

These transcendental equations may be readily solved
by applying the constructions of Figs. 8(a) and &(b),
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Fig. 9—Real and imaginary parts of normalized transverse propagation constant and wave vector angle as
functions of applied magnetic field.
respectively, to the circular locus derived in Section IV. P 4Boerp’ (262)
The maximum attenuation occurs at an applied field for = 5’ 2
. pp Py Boe)> + | p|> + 2800'¢s

which wz(po®ws -+ ko?wsr) < (wky)?, while the maximum
phase shift occurs for wg(poZwgy-+ko?wa) > (wke)2 For
wg>w, the magnetic losses are essentially zero. The
complex propagation constant p=p'—j !p”| is plotted
in Fig. 9 for values of p? taken from Fig. 13. The nor-
malization 5= (p\) has been made.

VI. ANGLES oF WavE Vector WiTH MaGNETIC FIELD

The two p components of the plane wave will propa-
gate through the ferrite at angles dependent upon the
applied field, the ferrite parameters and the longitudinal
propagation constant. These angles may be computed
from Fig. 1,

(25)

1

[Se ) 0,,, e ——————

Pi,‘ 2

Y+ <_)
¢

The behavior of 8; is shown in Fig. 9. The angle 8; is
essentially constant since (p,’)? varies slowly with
wg/w. The angle of propagation is a function of the loss
parameter wg since p’ depends on it.

VII. APPLICATION OF METHOD

Tannenwald and Seavey [1] examine the case of a
plane wave normally incident on a semi-infinite ferrite
and compute the power absorbed by the ferrite when the
applied magnetic field is parallel to the air-ferrite inter-
face. The ratio of the power absorbed to the incident
power is shown to be

where By=w/C.
When the transverse propagation constant is normal-
ized by the wavelength (5 =p\), (26a) becomes

87T€f?

= - 26b
@2re)? + | 5]* 4 e’ (260)

‘P
Py

This expression is easily evaluated as a function of
applied field for a specific ferrite by the method de-
scribed herein.

For the case of transverse propagation

¢=0
k=p
Ee? = po?,

and (7) becomes
X2fwc(we + wur) — 0] — kX [wn(we + wu)] = 0
with solutions
X=(*—p?=0
kotwu(we + war)

X = extra-ordinary mode.
we(we + wur) — w?

ordinary mode

The transformation Y now becomes

1 1 w?
V=—= [O)C’ - " |»
X ko’wir we + war-
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Fig. 10—Circular locus of square of normalized transverse propagation constant as a function of applied magnetic
field for case of transverse propagation.

which, assuming that (wg/w)2~0, has real and imaginary
parts

U =

1 |: ? ]
wy — —————
kowar wg + wir

o]
ko%uspr (wrr + )2’

An average value for the v coordinate may be again de-
fined as

i

WE {2 oy l: 1 n 1 :l}
2ko%war ¢ (wm, + wu)? (wm, + wi)? '

The centers of the constant applied field circles are then
given by [pe>+(1/22), 0] and the center of the constant
loss circle is [pe2, —(1/27)]. The locus of Fig. 10 is
obtained for the following parameters

9 =

W 2 2
o1 10 ke = <i) & = 13<ﬁ>
w w C 4

WH, w

e10 2o 00102,

w «w

The magnitude |5|? is measured from the origin. The
real part of the propagation constant is p’ = \/|5]? cos
¥/2 where ¢ is the angle between the positive real axis
and the line from the origin to the value of |5]? in ques-
tion. The real and imaginary parts of p are shown in
Fig. 11, while the absorbed power is shown in Fig. 12 as
a function of the applied magnetic field.

When the applied magnetic field is zero, p?=py?
(p"=po) and (26b) reduce to

[P_ e
Pyl g+14+2v¢
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Fig. 11—Real and imaginary parts of normalized transverse propa-
gation constant as a function of applied magnetic field.

VIII. CONCLUSIONS

The square of the transverse propagation constant
has an approximately circular locus when plotted in the
complex plane as a function of applied magnetic field.
The radius of this circle is directly proportional to the
ferrite saturation magnetization (wu), the ferrite di-
electric constant (ky) and is inversely proportional to
the longitudinal propagation constant ({) and the loss
parameter (wg). The constant loss circle and the value
of the square of the transverse propagation constant for
a particular value of applied field are obtained by a
graphical technique obviating the need for a digital com-
puter unless extreme accuracy is required.

If no loss is present the ferrite is cut off until
wir{powr + koXwar) = ko%w? since for values of wy less
than this value p? is real and negative. In a lossy ferrite,
propagation is possible for any value of applied field. The
angle between the wave vector and the applied mag-
netic field depends on the loss properties of the ferrite
since this determines p’.

APPENDIX

The equation of motion of the ferrite magnetization
vector including the Landau-Lifshitz damping term is

ay

R

a S
= ~v(M X H) — [ x (0T x T)], (27
where
M =the total magnetic field vector in-
cluding dc and time varying terms
7 = gyromagnetic ratio
a=wr/w=1/wl =loss parameter.

By suitable manipulations, expressions for the time
varying magnetization components are obtained from
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Fig. 12—Ratio of power absorbed to power incident, as a function of
applied magnetic field, of a plane wave normally incident on a
semi-infinite ferrite which is magnetized parallel to the air-ferrite
interface.

which are found the elements of the permeability
tensor®

wu(l + a){wr(l + a2) + jowa]
[wr(l + o) + joa]® — ?

p=1

= wye(l + o) ‘ 28)

[wg(1 4+ a?) + jwa]? — w?

If the losses are small o?= (wg/w)? may be neglected.
Eqgs. (28) reduce to

Wir [wH -+ jwoc]

[wH +jwa]2 — w?

Wyw

K = . (29)

a

[wH —{—jwa]i’ — w?

With the definition we=wn-+jwr, these reduce to the
form of (2) and (3).

To obtain an exact solution for the square of the
transverse propagation constant (5) may be solved di-
rectly. When expanded in terms of the ferrite parame-
ters (30) results:

§ See Lax and Button [8], p. 152.
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Fig, 13—Computed circular locus of square of normalized transverse propagation constant as function of applied magnetic field
for several values of the loss parameter showing effect of approximation (wr/w)?=0.

1 1
0?

Digital computer values for (g)2= (pA\)? were obtained
from (30) for (wer/w)?=a?#£0 and for a?=0. Fig. 13
shows the effect of the approximation for certain typical
ferrites.
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